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Abstract

Combining randomization methods with ensemble prediction is emerging as an effec-
tive option to balance accuracy and computational efficiency in data-driven modeling.
In this paper we investigate the prediction capability of extremely randomized trees
(Extra-Trees), in terms of accuracy, explanation ability and computational efficiency, in5

a streamflow modeling exercise. Extra-Trees are a totally randomized tree-based en-
semble method that (i) alleviates the poor generalization property and tendency to over-
fitting of traditional standalone decision trees (e.g. CART); (ii) is computationally very
efficient; and, (iii) allows to infer the relative importance of the input variables, which
might help in the ex-post physical interpretation of the model. The Extra-Trees poten-10

tial is analyzed on two real-world case studies (Marina catchment (Singapore) and
Canning River (Western Australia)) representing two different morphoclimatic contexts
comparatively with other tree-based methods (CART and M5) and parametric data-
driven approaches (ANNs and multiple linear regression). Results show that Extra-
Trees perform comparatively well to the best of the benchmarks (i.e. M5) in both the15

watersheds, while outperforming the other approaches in terms of computational re-
quirement when adopted on large datasets. In addition, the ranking of the input variable
provided can be given a physically meaningful interpretation.

1 Introduction

Streamflow processes are complex non-linear hydrological phenomena exhibiting20

a high degree of spatial and temporal variability. Their accurate characterization plays
an important role in any decision-making process concerned with water availability,
such as water reservoirs planning and management, operation of hydropower plants
and irrigation systems, management of urban water supply systems, and many oth-
ers. Two main approaches to streamflow modelling and prediction can be discerned25

in the hydrological literature (e.g. Beck, 1991; Wheater et al., 1993; Young, 2003): the
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hypothetico-deductive (or bottom-up) approach, according to which the physical mech-
anisms that contribute to streamflow formation in the hydrological cycle are either con-
ceptualized in a simplified lumped representation (conceptual models) or mathemati-
cally reproduced as a system of partial differential equations (physically-based mod-
els); and the inductive (or top-down) approach, in which the mapping from the space5

of predictor variables (e.g. precipitation, temperature) to that of the response variables
(i.e. streamflow) is inferred totally and directly from observational data to a more gen-
eral class of models (data-driven or metric models).

Depending on the objective of the modelling exercise, one approach can be more
appropriate than the other. The complexity of conceptual and physically-based mod-10

els is key to improve our understanding of the hydrological process and has a clear
advantage in “what-if” or scenario analyses. However, the high number of parame-
ters and states these models include, particularly to characterize spatial variability, of-
ten result in mis-calibration and over-parameterization (e.g. Jakeman and Hornberger,
1993; Beven, 2001), ultimately limiting the model predictive capability and operational15

value. Data-driven models combine high predictive potential and a more compact rep-
resentation, with generally considerably less parameters and state variables, which
well combines with the computational burden of optimization-based decision-making
(e.g. Castelletti et al., 2010). Yet, their effective identification requires long data records
and their normal black-box nature, revealing very little of the internal structure, is often20

a deterrent to the systematic use in operational hydrology, though some successful
attempts have been made to produce understandable insights from these model struc-
tures (e.g. Young and Beven, 1994; Babovic and Keijzer, 2002; See et al., 2008).

Data-driven type of models applied to streamflow modelling includes traditional
ARMA (e.g. Rasmussen et al., 1996, and references therein) and all its extensions,25

transfer function models (e.g. Young, 2006), and data-based mechanistic (DBM) mod-
els (Young, 2003; Romanowicz et al., 2008). Methods from data mining, machine learn-
ing and artificial intelligence have also gained a good reputation in operational hydrol-
ogy (Solomatine and Ostfeld, 2008). Among them, artificial neural networks, firstly used
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for streamflow modeling by Hsu et al. (1995), are the most popular choice (see the
reviews by Maier and Dandy, 2000; Shamseldin et al., 2002). Other data-driven ap-
proaches largely experienced in hydrological modeling (e.g. see the comparative anal-
ysis by Elshorbagy et al., 2010a,b) include Fuzzy rule-based systems (e.g. Hundecha
et al., 2001) and support vector machines (e.g. Lin et al., 2006). All these data-driven5

model families are based on the parameterization of the input-output relationship and
are built by a two-stage identification process: first, the model structure is selected (in-
cluding, when relevant, model input selection), then the parameters are estimated with
appropriate automatic algorithms. The wrong selection of the model structure might
have a significant impact on the predicting capability of the identified model, even when10

the parameters can be estimated optimally within the selected family of functions.
A less traditional data-driven approach that is receiving increasing attention in the

hydrological literature (e.g. Laaha and Blöschl, 2006; Sauquet and Catalogne, 2011;
Bachmair and Weiler, 2012) is represented by decision trees, in particular Classifica-
tion And Regression Trees (CART, Breiman et al., 1984), which are the simplest form15

of a decision tree. CART are non-parametric regressors with tree-like structures ob-
tained by recursively partitioning the input space into mutually exclusive regions. The
most internal regions (leaves) are associated with a constant output value obtained as
the average of the output data falling in each leaf. CART have two advantages over
most of the above mentioned data-driven approaches. First, they avoid the need to find20

potentially complicated parametric functions, thus reducing the potential for a model
structural component to the prediction error (Iorgulescu and Beven, 2004). Second,
the tree structure can readily be interpreted as a cascade of “if-then” rules between
combinations of inputs and the output, and so CART can give better insight on the
model internal structure and underlying physical processes (Iorgulescu and Beven,25

2004; Wei and Watkins Jr., 2011). CART have been shown to perform comparatively
well than other data-driven models in a number of applications (Dawson et al., 2000;
Iorgulescu and Beven, 2004; Vezza et al., 2010). Yet they suffer from a double draw-
back: (i) the predicted output is composed of discrete values and the streamflow is
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reconstructed as a piecewise constant function. To ensure a good predicting accuracy,
the number of output classes (tree leaves) must be very high, but this increases the
risk of overfitting the observed data and reduces the model generalization ability (Ho,
1995; Breiman, 1996). (ii) The partitioning process is deterministically performed by
exhaustively comparing all the possible combinations of input values to select the best5

performing partition. This makes computation requirements growing rapidly with the in-
put space dimensionality and indeed the optimal training of a decisions tree is NP-hard
(Hyafil and Rivest, 1976).

The first weakness can be resolved in two ways. One idea is to replace averaging in
the tree leaves by fitting a linear regression function to the data and obtaining a contin-10

uous representation of the output. This approach, mostly known as M5 tree-modelling,
was first introduced by Quinlan (1992) and applied to hydrological problems by Solo-
matine and Dulal (2003); Solomatine and Xue (2004); Bhattacharya and Solomatine
(2005); Stravs and Brilly (2007); Jothiprakash and Kote (2011). Another idea is to use
an ensemble method (e.g. bagging Breiman, 1996 or boosting Freund and Schapire,15

1996) to build a forest of regression trees. The underlying concept of ensembles is
that multiple model predictions aggregated in one ensemble output allow to obtain bet-
ter predictive performance than any of the constituent models (Dietterich, 2000). The
adoption of tree ensembles for hydrological modeling has been reported by Snelder
et al. (2009); Erdal and Karakurt (2013). Both the contributions show that trees en-20

sembles remarkably advance the prediction capability of CART and generally compare
favorably to other data-driven approaches.

Unfortunately, neither M5 or CART ensembles help in reducing the computational
burden associated with the optimal deterministic tree building process they incorpo-
rate. Rather model identification is made even more computationally intensive by gen-25

erally increasing the number of operations to be performed by the training algorithm.
Recently, randomization methods have been shown to be an effective companion of
ensemble tree methods (e.g. Geurts, 2002, and references therein). In fact, ensem-
ble methods highly benefit from the diversity in the constituent models (Kuncheva and
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Whitaker, 2003) and injection of randomness is a way of producing more or less di-
versified ensembles (Ho, 1995). In particular, the direct randomization of the individual
tree growing method seems to be more productive for the ensemble in terms of both
accuracy and computational requirements than the optimality of traditional induction
algorithms, such those in M5 and CART (Geurts, 2002).5

Several approaches have been developed based on the direct randomization of the
tree growing method (e.g. Bagging predictors, Breiman, 1996; Random Subspace, Ho,
1998; Random forests, Breiman, 2001; PERT, Cutler and Guohua, 2001). Lately, the
extremely randomized trees developed by Geurts et al. (2006) (Extra-Trees in short)
have been empirically demonstrated to outperform most of the other randomized and10

deterministic methods in terms of both prediction accuracy (more specifically, variance
and bias reduction) and computational efficiency. Extra-Trees are ensembles of totally
randomized trees in that they randomize both the input variables and the splitting val-
ues considered in creating a partition, in the process of building a tree, and create
a forest of trees to compensate for the randomization, via averaging of the constituent15

tree outcomes. The combination of averaging and randomization ensures (i) modeling
flexibility/accuracy (i.e. ability of characterizing strong nonlinear relationships), (ii) com-
putational efficiency (and thus scalability to large datasets), and (iii) scalability with re-
spect to input dimensionality. In addition, (iv) Extra-Trees, like several other tree-based
ensemble methods (Jong et al., 2004), can be exploited to infer the relative impor-20

tance of the input variables and to order them accordingly (Wehenkel, 1998; Fonteneau
et al., 2008). This allows to provide an ex-post interpretation of the model and makes
the model more understandable and credible to the users than other data-driven ap-
proaches.

In this paper we explore the applicability of Extra-Trees to streamflow modeling25

and comprehensively analyze their advantages and disadvantages in terms of pre-
diction, explanation and computational efficiency. Specifically, we adopt a four-step
assessment procedure including (i) random sampling of the observational dataset
to ensure a robust evaluation of the model performance (Elshorbagy et al., 2010a);
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(ii) multi-criteria assessment of the model performance (Hwang et al., 2012, and ref-
erences therein) to consistently validate the model behavior under different flow condi-
tions; (iii) comparative assessment of predicting accuracy and computational efficiency
against tree-based methods (M5 and CART) already experimented in water-related
applications and other traditional data-driven approaches (ANNs and multiple linear5

regression); (iv) uncertainty analysis on the model residual.
The numerical analysis is conducted on two streamflow modelling problems with dif-

ferent spatial domains, hydro-meteorological features, and temporal dynamics. Marina
catchment, Singapore, is a relatively small urban catchment with a very short time
of concentration, considerably altered by human intervention and subject to a tropical10

climate; the Cunning River, Western Australia, is a large river basin, predominantly
natural, characterized by a mediterranean climate and modeled with a daily time step.

2 Extremely randomized trees (Extra-Trees)

Tree-based regressors are structured as a hierarchical cascade of rules able to predict
numerical values of the output (Breiman et al., 1984). The process of building the nodes15

and branches forming a tree is based on the partitioning of the input space into mutually
exclusive regions according to a pre-defined splitting criterion, progressively narrowing
down the size of the regions. Eventually, when the number of instances in a region
becomes smaller than a specific a preassigned value (or their values vary just slightly),
the partitioning of that region stops and a leaf is created. Whenever a new instance is20

fed into the tree, a specific path is followed according to the splitting rules defined in the
tree-building procedure, and the predicted output is then obtained from the aggregation
of the values stored in the leaf. The splitting criterion, the termination test, the number
of trees grown, and the rule adopted to associate a numerical value to each leaf are
the key-features differentiating the many tree-based methods available in the literature.25

On one extreme CART are a fully deterministic single-tree method, on the other, Extra-
Trees are a totally randomized ensemble method as explained next.
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2.1 Model building

Extra-Trees substantially differ from traditional deterministic and randomized methods
in two particular aspects. First, in the process of building a tree, the selection of the
input and splitting value to split a node are randomized, i.e. occur independently of the
output variable. Second, an ensemble of M trees is created in order to compensate5

for the effect of randomization, and the outcome of the ensemble is the average of
each tree output. Nodes are split using the following rule: K alternative inputs (cut-
directions) are randomly selected and, for each one, a random splitting value (cut-point)
is chosen; a score is then associated to each cut-direction and the one maximizing the
variance reduction following the adopted splitting criterion is adopted to split the node.10

The termination test that determines when to stop partitioning a node is based on the
number of instances within the node. When this number is smaller than a user-defined
value nmin, the algorithm stops partitioning a node and a leaf is created (Geurts et al.,
2006). To each leaf a value is eventually assigned, obtained as the average of the target
values associated to the inputs falling in that leaf. The estimates produced by the M15

trees are finally aggregated by arithmetic average (see Table 1 for a tabular version of
the Extra-Trees building algorithm). The rationale behind the approach is that the use
of the original training dataset (instead of a bootstrap replica, as in the Bagging method
Breiman, 1996) is motivated to minimize bias, while the combined use of randomization
and ensemble averaging is aimed at reducing the variance of the model output (Geurts20

et al., 2006).

2.2 Hyperparameters

The three hyper-parameters M, K , and nmin characterizing the model building algorithm
diversely affect the ensemble performance and overall method efficiency. Increasingly
high values of M reduce the variance of the final estimate (Breiman, 2001), but also25

considerably add to the computational requirements of the building algorithm, so the
final choice depends on a trade-off between the desired model accuracy and available
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computing power. K can be chosen in the interval [1, . . .,n], with n being the number of
input variables, and controls the level of randomness in the tree building process. The
smaller K , the stronger the randomization of the trees and the weaker the dependence
of their structure on the values of the output variable in the training dataset. At the ex-
treme case, when K is equal to 1, the splits (cut-directions and cut-points) are chosen5

in a totally independent way of the output variable and the method builds totally ran-
domized trees. As empirically demonstrated by Geurts et al. (2006), the optimal value
of K for regression problems is equal to the number n of inputs, and so the number of
cut-directions randomly selected. Finally, the threshold nmin is used to balance bias and
variance reduction. Large values of nmin lead to small trees, with high bias and small10

variance; conversely, low values of nmin lead to fully-grown trees, which may over-fit the
data. The optimal tuning of nmin can depend on the level of noise in the training dataset:
the noisier are the outputs, the higher should be the optimal value of nmin. Although this
tuning might require some experiments, Geurts et al. (2006) have shown that a value
of nmin between 5 and 50 is a robust choice in a broad range of typical conditions.15

2.3 Computational requirements

From the computational point of view, the complexity of the Extra-Trees building pro-
cedure is on the order of |D| · log(|D|), with |D| being the number of input-output ob-
servations in the training dataset D. The computational time linearly increases with M
and K , and logarithmically decreases for increasing values of nmin, meaning that the20

approach still remains computationally efficient, though based on the construction of
a tree ensemble. This because the splitting rule is very simple compared to other split-
ting rules that locally optimize the cut-points, as, for example, those adopted by CART
and M5.
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2.4 Input ranking

The particular structure of Extra-Trees can be exploited to rank the importance of the n
input variables in explaining the selected output behavior. This approach, as originally
proposed by Wehenkel (1998), is based on the idea of scoring each input variable
by estimating the relative variance reduction it can be associated with by propagating5

the training dataset D over the M different trees composing the ensemble. More pre-
cisely, the relevance G(xi ) of the i -th input variable xi in explaining the output y can be
evaluated as follows

G(xi ) =

∑M
τ=1

∑Ω
j=1δ(νj ,xi ) ·∆var(ν

j )|D|∑M
τ=1

∑Ω
νj=1∆var(νj )|D|

(1)

where νj is the j -th non-terminal node in the τ-th tree, Ω is the number of non-terminal10

nodes in the tree, δ(νj ,xi ) is equal to 1 if the variable xi is used to split the node νj

(and 0 otherwise), and ∆var(ν
j ) (or ∆var(s

i ,D)) is the variance reduction associated to
node νj (see Table 1). Finally, the input variables {x1,x2, . . .,xn} are sorted by decreas-
ing values of their relevance (see Table 2 for a tabular version of the input ranking
algorithm).15

3 Experimental setup

3.1 Datasets

The Extra-Trees capabilities are tested on two streamflow modelling problems with
different spatial domains and hydro-meteorological features: Marina catchment is a rel-
atively small urban catchment, considerably altered by human intervention and subject20

to a tropical climate; the Cunning River watershed is a large basin, predominantly nat-
ural, characterized by a mediterranean climate.
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3.1.1 Marina catchment

Marina catchment feeds the homonymous reservoir located in the heart of Singapore.
The reservoir, created in late 2008 with the construction of a tidal barrier, has a surface
area of 2.45 km2 and an active storage of about 3.2×106 operated for floods control
and drinking water supply (Galelli et al., 2013). Five main tributaries discharge water5

into the reservoir, draining a catchment of ≈100 km2 (almost 15 % of the land area of
Singapore) and producing a mean annual inflow of about 150×106 with a typical tropi-
cal pattern. The catchment includes one of the most densely populated and urbanized
regions in Singapore and south-east Asia (Xie, 2006), and its drainage system consists
of concrete lined canals, which make the time of concentration extremely short (≈1 h)10

and the base flow almost null. Because of the high-intensity rainfall events character-
izing the region (Selvalingam et al., 1987), discharges occur in high peaks over short
periods of few hours (see Fig. 1, upper panel).

The available dataset consists of hourly rainfall and inflow measurements over the
period 1 April 2009–31 December 2011, for a total of 24 120 data points (see Table 315

for the descriptive statistics of the output variable). The selection of the most significant
time-lags is performed by means of the Mutual Information (MI) criterion (e.g. Hejazi
and Cai, 2009, and references therein), which singled out an input set composed of
three time-lags for each variable, namely [yt−1,yt−2,yt−3,rt−1,rt−2,rt−3], with yt−1 and
rt−1 denoting the inflow and rainfall in the time interval [t−1,t]. The streamflow mod-20

elling exercise is then performed over a prediction horizon of 1 h.

3.1.2 Canning River

The second dataset is taken from the Canning River basin, a major tributary of the
Swan River in Western Australia. The river drains a catchment area of ≈850 km2,
where woodland is the predominant land use. The climate shows a mediterranean25

pattern, characterized by warm and dry summers and cool, wet winters. The long-term
average annual rainfall for the catchment is ≈900 mm mostly falling between May and
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September. The combination of this rainfall pattern and land use gives the river an
ephemeral nature (Young, 2002) with practically no flow during the summer period. As
discussed in Young et al. (1997), a data analysis shows indeed a strong non-linear
correlation between the rainfall and the river flow (Fig. 1).

For the present analysis the dataset consists of daily rainfall, temperature and flow5

measurements available for the period 1 January 1977–31 December 1987, for a total
of 4017 data points (Table 3). As for the former dataset, the most significant input
variables are selected with the MI criterion. According to this criterion two time-lags for
each variables, namely [yt−1,yt−2,rt−1,rt−2,Tt−1,Tt−2] (with Tt−1 denoting the average
temperature in the time interval [t−1,t]), are selected to predict the flow 1 one-day-10

ahead.

3.2 Setting the experiments

The quantitative assessment of Extra-Trees is performed using a four-step procedure:
Random sampling. To ensure a robust evaluation of the model performance

(Elshorbagy et al., 2010a), the two datasets are randomly sampled (without replace-15

ment) 100 times, in order to create at each sampling exercise a training/cross-validation
and testing subsets, respectively containing two thirds and one third of the available
data. Ten different groups (each composed of training/cross-validation and testing sub-
sets) are then selected based on their statistical properties, namely mean and stan-
dard deviation of the output variable. Ten different models are identified on the 10 data20

groups, with each model finally evaluated on the corresponding testing subset.
Model evaluation. The Extra-Trees evaluation is based on multi-assessment crite-

ria (Hwang et al., 2012), aimed at describing the model behavior under different flow
conditions. The criteria considered are the (i) Nash–Sutcliffe (NS) criterion and the (ii)
Relative Root Mean Squared Error (RRMSE), which are normalized statistics provid-25

ing a description of the models behaviour over the whole range of flow conditions; the
(iii) Root Mean Squared Error (RMSE), which measures the goodness of fit relevant
to high flows; (iv) the Mean Absolute Error (MAE), which indicates the goodness of fit
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at moderate flow values. This assessment is completed by a graphical analysis of the
scatter plots and hydrographs.

Comparative assessment. The best Extra-Trees ensemble so identified is compared
against several machine learning modeling methods, including tree-based methods
(M5 model trees and CART) and ANNs. To facilitate the comparison, Multiple Linear5

Regression (MLR) models are employed as base line references.
Uncertainty analysis. To estimate the uncertainty associated to model predictions,

the residuals of the 10 testing subsets are computed and aggregated in a single
dataset, for which a probability distribution is fit. In the benchmarking exercise, a two-
sample Kolmogorov–Smirnov test is then performed to compare the distributions of10

model residuals. In particular, residuals are tested under the null hypothesis that they
are from the same continuous distribution: two residuals are considered significantly
different if the null hypothesis is rejected at the 5 % confidence level (p-value 60.05).

4 Extra-Trees application results

4.1 Prediction15

Extra-Trees’ predicting potential is assessed for different values of M, K , and nmin.
The sensitivity analysis is performed by running an extensive number of training/cross-
validation and testing experiments on the selected 10 data groups of each dataset. As
explained in Sect. 2.1, the value of K is fixed equal to the number n of input variables,
which is 6 for both Marina and Canning dataset. 25 values for M and nmin are sampled20

in the domains [1,1000] and [2,1000], leading to 625 different parameterizations. The
extreme cases are: (i) a single Extra-Tree with large leaves (i.e. M = 1, nmin = 1000) or
a fully-grown tree (i.e. M = 1, nmin = 2), (ii) a large forest composed of small or fully-
grown trees (M = 1000 with nmin = 1000 or 2, respectively).

The values of the multi-assessment criteria as a function of M and nmin are illus-25

trated in Figs. 2 and 3, while a graphical analysis of the parameters’ effect on the NS
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criterion is given in Fig. 4. For both Marina and Canning dataset the larger the number
M of trees in the forest, the higher the variance reduction. The reduction in the variance
has a positive effect on the Extra-Trees estimation error and reflects in the abatement
of the distance between observed and predicted values for M growing from 1 to 100.
Since the computation time linearly increases with M, a balance must be found be-5

tween accuracy and time requirements. The saturation effect (Fig. 4c, d) might help in
deciding a proper value (see also Castelletti et al., 2010): the performance improve-
ment from values of M greater than 200–300 is distinctively negligible. The value of
nmin determines the number of leaves in a tree and, thus, the ensemble’s overall trade-
off between bias and variance. As shown in Figs. 2 and 3, reducing nmin has a positive10

effect on all the assessment criteria. This effect is consistent up to a value of nmin equal
to about 5. Indeed, when this threshold is reached, the model building algorithm pro-
duces fully grown trees, with the consequent risk of over-fitting the data (i.e. lower bias
but higher variance in the model output).

In synthesis, sensitivity analysis shows that Extra-Trees provide reasonably good15

performance over a broad range of parameter values: the value of M must indeed be
as large as possible, though a saturation effect is reached for M greater than 200–300,
while nmin, as already discussed by Geurts et al. (2006), should be comprehended
between 5 and 15. For the subsequent analysis (i.e. input ranking and benchmarking)
a parameterization with M and nmin equal to 500 and 5, respectively is finally chosen.20

4.2 Explanation

As anticipated, the Extra-Trees model building algorithm implicitly allows to rank the
model inputs in terms of their relevance in explaining the output. This is useful for the
ex-post physical interpretation of the cause-effect relationships captured by the model.
The ranking is run on the ensemble selected at the end of the model building pro-25

cess. In particular, an ensemble is cross-validated on the selected 10 data groups of
each dataset, and the inputs are sorted in decreasing order according to the ranking
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algorithm described in Sect. 2.4. The results obtained as the average relative contribu-
tion (over 10 data groups) are reported in Tables 4 and 5.

As for Marina Catchment, the measured rainfall rt−1 and antecedent flow yt−1 are the
most important variables, contributing for about 80 % of the ensemble total variance.
The measured rainfall rt−1 is ranked in the first position, with a relative score of almost5

67 %. This high relevance is due to the hydraulic characteristics of Marina catchment,
which is drained by concrete lined canals with an almost null base flow: high flow
peaks are mainly driven by rainfall, so the cumulated precipitation in the previous hour
becomes the most relevant information to the model output. Because of the short time
of concentration (approximately one hour), the measured precipitation and antecedent10

flow with 2 and 3 time-lags are less important.
The Canning River drains a large, natural catchment forced by a mediterranean cli-

mate. As illustrated in Table 5, the antecedent flow with 1 and 2 time lags is the most
relevant variable (87 % of the ensemble output), followed by rainfall and temperature.

5 Benchmarking15

The best Extra-Trees ensemble identified in the model building process is compared
against M5 model trees, CART, ANNs and MLR. The same experimental setting and
datasets used for the Extra-Trees are adopted in this benchmarking exercise in order
to guarantee a rigorous and unbiased comparison.

5.1 Models implementation20

The MatLab toolbox M5PrimeLab (Jekabsons, 2010) is used to implement the M5
model trees in the different case studies and relative data groups. Pruning and smooth-
ing are accounted for as suggested in Jothiprakash and Kote (2011); in particular, the
smoothing coefficient is optimized via trial-and-error in the range [0,20] (Wang and
Witten, 1997). The other parameters requiring a manual tuning are the split threshold25
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and the minimum number of training samples one node may represent. The former is
explored in the range [0.05,0.20], the latter in the range [2,1000].

CART are implemented with the MatLab Statistics Toolbox, which relies on the orig-
inal algorithm proposed by Breiman et al. (1984). Similarly to the other tree-based
methods adopted in this study (i.e. Extra-Trees and M5), the minimum number of train-5

ing samples one node may represent is heuristically optimized in the range [2,1000].
Pruning is adopted to compute the full tree and the optimal sequence of pruned sub-
trees, thus minimizing the risk of over-fitting the cross-validation data.

The MatLab Neural Network Toolbox is adopted to set up the ANNs, whose param-
eters are optimized by means of the Levenberg-Marquardt algorithm. For each of the10

10 data groups (of each case study), the ANNs cross-validation process is repeated
100 times with 100 different initialization of the random weights. The most performing
parameterization in terms of RMSE is then selected as representative of a data group.
As for the ANNs architecture, the number of input nodes corresponds to the number
of input variables (thus 6 for both Marina and Canning River case study), while the15

number of hidden nodes is heuristically optimized in the range [1,10].
MLR models are also implemented in MatLab, and calibrated using least-squares.
For each machine learning method considered in this study, this implementation

eventually leads to 10 models (for each case study) developed and tested using the
corresponding unseen data groups.20

5.2 Results and analysis

As discussed in Sects. 3.1 and 4.2, the Marina catchment dataset is characterized
by a weak autocorrelation in the hourly inflow to the reservoir. This is the reason why
providing the antecedent flow as an input to predict future discharges does not in-
crease the information available to the different models. Rather, the limiting factor for25

the model performance seems to be the capability of exploring the correlation between
the future inflows and the measured rainfall and flow. This is confirmed by the results
reported in Table 6. Extra-Trees and M5 outperform the other models with respect to
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all the multi-assessment criteria. In this specific comparison, Extra-Trees and M5 are,
de-facto, comparable over the whole range of flows, as shown by the NS and RRMSE
values. Extra-Trees and M5 are also comparable in terms of MAE, which indicates the
goodness of fit at moderate flow values. Yet, M5 stands out as the most performing
model when accounting for the RMSE, which measures the model performance rele-5

vant to high flows. This behavior can probably be explained by considering the different
models architectures: M5 have linear models in the final (pruned) leaves, and this al-
lows them to extrapolate over unseen events; the Extra-Trees prediction corresponds
to the average of the output values associated to the inputs falling in a specific leaf,
and this can limit their extrapolation capabilities. The third model family in order of per-10

formance is ANNs, while the worst results are attributable to CART and MLR. The low
CART performance can again be explained by accounting for the model architecture:
the CART model building algorithm provides an optimal partitioning of the input space
(with respect to the standard deviation reduction of the output variables; see Breiman
et al., 1984), but the prediction associated to each leaf is simply the average of the out-15

put values associated to the inputs falling in a specific leaf. As a consequence, a CART
structure can be seen as a classification of the different flow regimes registered in the
training/cross-validation data group, and this can limit the overall model predictive ca-
pabilities as confirmed by the scatter plots and hydrograph shown in Figs. 5 and 6.
This does not occur with Extra-Trees since the model building algorithm improves the20

performance of a single model by ensemble averaging.
Unlike Marina catchment, the Canning River dataset shows a stronger autocorrela-

tion in the flow process, and this enhances the information content at the disposal of the
different models. As shown in Table 7, models are characterized by more comparable
performance, although Extra-Trees and M5 stand out as the most performing models.25

This analysis is confirmed by a graphical analysis of the scatter plots and hydrograph
(Figs. 5 and 6).
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5.3 Residuals analysis

The Logistic probability distribution, with different parameters α and β, is found to best
fit the residuals of the different models on both case studies. Although being charac-
terized by the same distribution, a graphical analysis shows a substantial difference in
the estimated parameters (Fig. 7). All the models residuals have a symmetrical dis-5

tribution, but Extra-Trees and M5 have the smallest predictive uncertainty. These two
models are followed by CART and ANNs, which show lower probability of null residuals
and a more prominent kurtosis. The linear model residuals are statistically comparable
to CART residuals for Canning River case study, while they show an asymmetrical dis-
tribution for Marina catchment dataset. This means that the MLR model residuals are10

biased, and the model is statistically prone to an underestimation of the inflow. This
difference in the pdf parameterizations is confirmed by the two-sample Kolmogorov–
Smirnov test: the p-value is null for all the combinations of models residuals, and it thus
indicates that the models residuals may represent different distributions.

5.4 Computational requests15

All the cross-validation and testing experiments for M5, CART, ANNs and MLR are
carried out in MatLab 7.10.0 (R2010a) environment running on a 2.4 GHz Intel Core 2
Duo with 4 GB Ram. The experiments for Extra-Trees are carried out using a compiled
C++ package running on the same machine. From Table 8 it can be noticed that when
the different models are applied to the Canning River case study, the computational20

requests are quite limited, with Extra-Trees and M5 requiring for example 78.40 and
32.21 s, respectively for the cross-validation process of a single data group consisting
of 2560 samples (1280 in testing). The computational requests of ANNs are smaller,
but it is here necessary to account for the 100 random initializations (for a single initial-
ization the computational request is equal to 8.24 s).25

On the other hand, the application of these models to Marina catchment problem,
characterized by a much larger number of samples (16 080 in cross-validation and 8030
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in testing), shows a different picture. The Extra-Trees CPU time to cross-validate an en-
semble of 500 Extra-Trees (with nmin = 5) increases to 1008.88 s, while the amount of
time spent on M5 is 1788.30 s. The Extra-Trees model building algorithm is roughly
45 % faster than the M5 one. Apart from the specific model implementation (the C++
executable may be faster than Matlab environment), the reason for this important dif-5

ference stands in the rule adopted when splitting a node during the building process.
The M5 building procedure examines all possible splits by exhaustive search (and then
chooses the one that maximizes the standard deviation reduction of the output vari-
able), while the Extra-Trees model building algorithm explores only K cut-directions
(with K equal to the number of input variables) with corresponding splitting values. Al-10

though building an ensemble of trees, the overall computational burden remains limited
because of the simple splitting rule.

6 Conclusions

Extra-Trees have been evaluated in their predicting accuracy, explanation ability and
computational performance comparatively to other very popular data-driven methods15

in a streamflow modeling exercise. The analysis was numerically conducted on two
hydrological datasets. Results show that (i) Extra-Trees provide good performance on
both datasets, in terms of different assessment criteria. Moreover, their performance
is numerically equivalent to that of the best performing models identified during the
benchmarking exercise (i.e. M5); (ii) despite their ensemble nature, Extra-Trees out-20

perform the other methods in terms of computational efficiency when adopted on large
datasets (good scalability), such as Marina catchment; finally, (iii) Extra-Trees provide
a physically interpretable ranking of the input variables in terms of relevance in explain-
ing the output.

It can also be observed that being a non-parametric method, Extra-Trees do not25

require any parameter optimization whereas they provide good performance over
a broad range of hyper-parameters. In addition, the combined use of randomization
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and ensemble averaging is aimed at minimizing the output variance without the need
for any a-posteriori processing, such as pruning and smoothing (adopted for M5). This
has two advantages in that it further simplifies the model identification and it adds to
Extra-Trees computational efficiency.

In conclusion, Extra-Trees are a valid alternative to traditional parametric data-driven5

methods, such as ANNs, and to other non-ensemble tree-based approaches. They
can be adopted for any hydrological problem (as they provide performance equiva-
lent to those achievable with parametric methods), and should be recommended for
computational intensive problems. These include modeling of large datasets and input
selection: large datasets are becoming more frequent in several hydrological applica-10

tions, such as the modeling of urban hydrological processes, where the short time of
concentration of urban catchments requires adopting a very short sampling/modelling
time (e.g. one hour in Marina catchment), thus largely adding to the dimensionality of
the training and testing datasets.

Acknowledgements. The research presented in this work was carried out as part of the15
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Table 1. Tabular version of the Extra-Trees building algorithm.

Input: an output variable y , n inputs {x1,x2, . . .,xn} and a training dataset D composed of |D| input-output
observations.

Output: a single Extremely Randomized Tree. The algorithm is repeated M times to produce an ensemble.

Step 1. Randomly select without replacement K inputs {x1,x2, . . .,xK } among the n available (non-
constant in D).

Step 2. For each selected input variable xi (with i = 1, . . .,K ):
Step 2a. Compute the minimum and maximum value of xi in D, denoted as xi ,min

D and xi ,max
D .

Step 2b. Randomly select a cut-point si in the interval
[
xi ,min
D ,xi ,max

D

]
.

Step 2c. Return the split
[
xi < si

]
.

Step 3. Among the K splits {s1,s2, . . .,sK }, select the split s∗ such that
s∗ = arg max

i=1,...,K
∆var(s

i ,D)

where:

- ∆var(s
i ,D) is the variance reduction defined as var{y |D}− |Dl (xi )|

|D| var{y |Dl (xi )}−
|Dr (xi )|

|D| var{y |Dr (xi )}.
- Dl (xi ) and Dr (xi ) are the two subsets of D satisfying the conditions xi < si and xi > si ,
- |D| is the number of samples in D, |Dl (xi )| and |Dr (xi )| are the number of samples in Dl (xi ) and
Dr (xi ).

Step 4. According to s∗, split the set D into the subsets Dl (xi ) and Dr (xi ), and return the (non-terminal)
node νj .

Step 5. For the subset Dl (xi ) (and Dr (xi )), verify the following conditions:
- |Dl (xi )| (or |Dr (xi )|) is lower than nmin (minimum cardinality).
- All input variables {x1,x2, . . .,xn} are constant in Dl (xi ) (or Dr (xi )).
- The output variable is constant in Dl (xi ) (or Dr (xi )).

Step 6. If one of the conditions in Step 5 is satisfied, the subset is is leaf (labelled with the average of the
output variables values).
Alternatively, Steps 1–5 are repeated by replacing D with Dl (xi ) (or Dr (xi )).
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Table 2. Tabular version of the Extra-Trees input ranking algorithm.

Input: an output variable y , n inputs {x1,x2, . . .,xn} and a training dataset D
composed of |D| input-output observations.

Output: ranking of the input variables (sorted by decreasing values of their rele-
vance), and an ensemble of M Extra-Trees.

Step 1. Assign to each input variable xi (with i = 1, . . .,K ) a score G(xi ) equal
to 0.

Step 2. Define suitable values for M, K and nmin and build an ensemble of Extra-
Trees (as described in Table 1).
At each splitted node νj update the score corresponding to the selected
input variable xi according to the following equation:
G(xi , j ) = G(xi , j −1)+∆var(ν

j )

Step 3. Normalize the score G(xi ) of each input variable, and sort these values
in decreasing order.
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Table 3. Descriptive statistics of the output variable for Marina catchment and Canning River
datasets.

Marina streamflow Canning streamflow
[m3 s−1] [m3 s−1]

Number of samples 24 120 4017
Minimum 0.00 0.00
Maximum 845.21 16.77
Mean 5.92 0.31
Std. dev. 25.32 1.08
Coefficient of variation 4.28 3.43
Skewness 14.13 7.38
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Table 4. Input Ranking results for the Marina catchment dataset (average over 10 data groups).
The initial variance is 10 421 100.

Ranking xi G(xi ) (%)

1 rt−1 66.89
2 yt−1 15.92
3 rt−2 5.16
4 yt−2 4.49
5 yt−3 4.09
6 rt−3 3.45
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Table 5. Input ranking results for the Canning River dataset (average over 10 data groups). The
initial variance is 2958.69.

Ranking xi G(xi ) (%)

1 yt−1 63.56
2 yt−2 22.90
3 rt−1 5.28
4 rt−2 3.26
5 Tt−1 2.56
6 Tt−2 2.44

1645

http://www.hydrol-earth-syst-sci-discuss.net
http://www.hydrol-earth-syst-sci-discuss.net/10/1617/2013/hessd-10-1617-2013-print.pdf
http://www.hydrol-earth-syst-sci-discuss.net/10/1617/2013/hessd-10-1617-2013-discussion.html
http://creativecommons.org/licenses/by/3.0/


HESSD
10, 1617–1655, 2013

Extra-Trees for
streamflow modelling

S. Galelli and
A. Castelletti

Title Page

Abstract Introduction

Conclusions References

Tables Figures

J I

J I

Back Close

Full Screen / Esc

Printer-friendly Version

Interactive Discussion

D
iscussion

P
aper

|
D

iscussion
P

aper
|

D
iscussion

P
aper

|
D

iscussion
P

aper
|

Table 6. k-fold cross-validation (with k = 10) and testing results of Extra-Trees and benchmark-
ing models for Marina Catchment dataset.

k-fold cross-validation Testing
NS RMSE RRMSE MAE NS RMSE RRMSE MAE

Model [–] [m3 s−1] [–] [m3 s−1] [–] [m3 s−1] [–] [m3 s−1]

Extra-Trees 0.76 12.39 0.49 2.01 0.76 12.29 0.49 1.99
M5 0.77 11.89 0.48 2.01 0.78 11.77 0.47 1.99
CART 0.69 13.68 0.55 2.31 0.71 13.61 0.54 2.26
ANNs 0.65 14.45 0.57 3.99 0.69 13.92 0.55 4.06
MLR 0.74 12.66 0.51 3.84 0.74 12.82 0.51 3.84
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Table 7. k-fold cross-validation (with k = 10) and testing results of Extra-Trees and benchmark-
ing models for Canning River dataset.

k-fold cross-validation Testing
NS RMSE RRMSE MAE NS RMSE RRMSE MAE

Model [–] [m3 s−1] [–] [m3 s−1] [–] [m3 s−1] [–] [m3 s−1]

Extra-Trees 0.92 0.30 0.28 0.05 0.93 0.28 0.27 0.05
M5 0.94 0.25 0.24 0.06 0.94 0.26 0.24 0.06
CART 0.87 0.36 0.35 0.07 0.88 0.37 0.35 0.07
ANNs 0.88 0.35 0.34 0.12 0.90 0.34 0.33 0.10
MLR 0.92 0.29 0.28 0.08 0.92 0.30 0.29 0.08
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Table 8. Comparison of k-fold cross-validation (with k = 10) and testing CPU time for Extra-
Trees, M5, CART, ANNs and MLR for Marina and Canning River dataset. The estimates are
with respect to a single (of the 10) data group composing each dataset.

Marina catchment Canning River
Model k-fold cross-valid. [s] Testing [s] k-fold cross-valid. [s] Testing [s]

Extra-Trees 1008.876 20.898 78.404 1.202
M5 1788.300 2.045 32.211 0.255
CART 9.891 0.037 1.580 0.011
ANNs 16.691 0.084 8.240 0.079
MLR 0.225 0.019 0.136 0.011
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Fig. 1. Specimen of the hydrograph generated in Marina catchment and Canning River under
different rainfall (and temperature) scenarios.
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Fig. 2. Values of NS (a), MAE (b), RMSE (c) and RRMSE (d) as a function of nmin and M over
the testing subsets for Marina Catchment (average over 10 data groups).
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Fig. 3. Values of NS (a), MAE (b), RMSE (c) and RRMSE (d) as a function of nmin and M over
the testing subsets for Canning River (average over 10 data groups).
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Fig. 4. Values of NS as a function of nmin (with M = 500) and of M (with nmin = 100) over the
testing subsets for Marina (a and c) and Canning River (b and d). Dotted lines represent the
standard deviation calculated over the the selected 10 data groups of each dataset.
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Fig. 5. Scatter plots of predicted (y-axis) and measured (x-axis) streamflow [m3 s−1] in Marina
catchment (left panel) and Canning River (right panel) for the different models.
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Fig. 6. Comparison between the measured and predicted streamflow for Marina catchment
(a) and Canning River over the same period reported in Fig. 1.
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Fig. 7. Probability distribution of the models residuals for Marina catchment (a) and Canning
River (b) datasets.
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